Partial and Generalized Subconvexity in Vector Optimization Problems

نویسنده

  • M. Adán
چکیده

This paper studies necessary conditions of weak efficiency of a constrained vector minimization problem with equality and inequality constraints in real linear spaces. These results are obtained under generalized convexity conditions through new alternative theorems and given in linear operator rules form. We present a relaxed subconvexlikeness and generalized subconvexlikeness, and likewise, define and related to this, other new concepts such as partial subconvexlikeness and partial generalized subconvexlikeness .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vector Optimization Problems and Generalized Vector Variational-Like Inequalities

In this paper, some properties of  pseudoinvex functions, defined by means of  limiting subdifferential, are discussed. Furthermore, the Minty vector variational-like inequality,  the Stampacchia vector variational-like inequality, and the  weak formulations of these two inequalities  defined by means of limiting subdifferential are studied. Moreover, some relationships  between the vector vari...

متن کامل

Duality for vector equilibrium problems with constraints

‎In the paper‎, ‎we study duality for vector equilibrium problems using a concept of generalized convexity in dealing with the quasi-relative interior‎. ‎Then‎, ‎their applications to optimality conditions for quasi-relative efficient solutions are obtained‎. ‎Our results are extensions of several existing ones in the literature when the ordering cones in both the objective space and the constr...

متن کامل

On Vector Equilibrium Problem with Generalized Pseudomonotonicity

In this paper, first a short history of the notion of equilibrium problem in Economics and Nash$acute{'}$ game theory is stated. Also the relationship between equilibrium problem among important mathematical problems like optimization problem, nonlinear programming, variational inequality problem, fixed point problem and complementarity problem is given. The concept of generalized pseudomonoton...

متن کامل

Optimality conditions for Pareto efficiency and proper ideal point in set-valued nonsmooth vector optimization using contingent cone

In this paper, we first present a new important property for Bouligand tangent cone (contingent cone) of a star-shaped set. We then establish optimality conditions for Pareto minima and proper ideal efficiencies in nonsmooth vector optimization problems by means of Bouligand tangent cone of image set, where the objective is generalized cone convex set-valued map, in general real normed spaces.

متن کامل

Sufficiency and duality for a nonsmooth vector optimization problem with generalized $alpha$-$d_{I}$-type-I univexity over cones‎

In this paper, using Clarke’s generalized directional derivative and dI-invexity we introduce new concepts of nonsmooth K-α-dI-invex and generalized type I univex functions over cones for a nonsmooth vector optimization problem with cone constraints. We obtain some sufficient optimality conditions and Mond-Weir type duality results under the foresaid generalized invexity and type I cone-univexi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001